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ABSTRACT

I show how to adapt an overcomplete dictionary of space-
time functions so as to represent time-varying natural im-
ages with maximum sparsity. The basis functions are con-
sidered as part of a probabilistic model of image sequences,
with a sparse prior imposed over the coefficients. Learn-
ing is accomplished by maximizing the log-likelihood of
the model, using natural movies as training data. The ba-
sis functions that emerge are space-time inseparable func-
tions that resemble the motion-selective receptive fields of
simple-cells in mammalian visual cortex. When the coeffi-
cients are computed via matching-pursuit in space and time,
one obtains a punctate, spike-like representation of continu-
ous time-varying images. It is suggested that such a coding
scheme may be at work in the visual cortex.

1. INTRODUCTION

Time-varying images present a challenge for efficient cod-
ing and compression, as one must consider how to best deal
with the redundancies contained in natural images over both
space and time. Many of the currently employed coding
schemes are derived from rather casual observations about
the structure of time-varying images. For example, MPEG
relies upon estimating the motion from frame to frame and
then coding the image displacement and residual error. But
there are many different ways to do this—which is opti-
mal for natural image sequences? And how do we even
know that motion estimation is the right way to formulate
the problem in the first place?

The approach taken here is to learn the best way to rep-
resent time-varying images by appealing to the principle of
sparseness. That is, we would like to find a “vocabulary” for
describing natural image sequences such that the number of
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words needed to describe what is going on at any point in
time is small (although the number of words in the vocab-
ulary itself may be quite large). The idea is that the words
will be tailored to the common space-time structures occur-
ing in natural image sequences, thus providing a natural and
efficient way to represent time-varying images.

In earlier work [2,3], we used this approach in an at-
tempt to account for the spatial receptive properties of neu-
rons in the primary visual cortex of mammals. A small im-
age patch, I(x, y), is modeled as a linear superposition of
basis functions, φi(x, y), multiplied by coefficients, ai:

I(x, y) =
∑

i

aiφi(x, y) . (1)

When a set of basis functions is sought such that the coeffi-
cients are as sparse and statistically independent as possible,
averaged over many natural images, the basis functions that
emerge are localized, oriented, and bandpass (selective to
structure at different spatial scales). These properties are
similar to the receptive fields of neurons in mammalian pri-
mary visual cortex (area V1), thus suggesting that the cortex
has evolved according to a similar coding principle.

van Hateren and Ruderman [5] extended this idea to
the time domain and showed that the basis functions that
emerge have similar spatial properties and translate as a
function of time, similar to the non-separable (direction se-
lective) receptive fields of cortical simple cells. However,
their image model relies upon blocking the image stream
into a small number of frames and treating time simply as
another dimension:

I(x, y, t) =
∑

i

aiφi(x, y, t) . (2)

An image sequence is then represented by simply comput-
ing inner products between a set of biorthogonal functions
and a block of image frames.

Here we model time-varying images without blocking
by assuming time-invariance in the basis functions, so that



each function can be applied at all points in time. Impor-
tantly, the basis set is overcomplete, so that there are multi-
ple ways to describe a given image sequence. When a sparse
representation is selected via matching pursuit, then one ob-
tains a recoding of the image in terms of sparse, punctate
events in time, similar to neural spike trains. The sugges-
tion is that the spike trains of V1 neurons themselves serve
as a sparse code in time, and that V1 receptive fields have
been adapted to represent images in this way.

2. MODEL

A time varying image, I(x, y, t), is modeled as a linear su-
perposition of basis functions, φi(x, y, τ), where each basis
function is localized in time but can be applied at any instant
during the image sequence:

I(x, y, t) =
∑

i

∑
t′

ai(t′)φi(x, y, t − t′) + ν(x, y, t)

=
∑

i

ai(t) ∗ φi(x, y, t) + ν(x, y, t) (3)

where ∗ denotes convolution over time. Thus, the time-
varying coefficient, ai(t), tells us the amount by which ba-
sis function φi is multiplied to model the structure around
time t in the moving image sequence. The term ν(x, y, t)
is used to model additional structure not well described by
this model. Importantly, we examine here the case where
the image code is overcomplete, meaning that the number
of coefficient signals ai(t) exceeds the dimensionality of the
movie I(x, y, t). The model is illustrated schematically in
figure 1.

The coefficients for a given image sequence are com-
puted by maximizing the posterior distribution over the co-
efficients

â = arg max
a

P (a|I, θ) (4)

= arg max
a

P (I|a, θ)P (a|θ) (5)

where θ denotes the model parameters. The image likeli-
hood P (I|a, θ) is Gaussian (assuming Gaussian noise ν)

P (I|a, θ) =
1

ZλN

e−
λN
2 |I(x,y,t)−

∑
i
ai(t)∗φi(x,y,t)|2 (6)

and λN is the inverse of the noise variance. The prior prob-
ability distribution is specified to be factorial (i.e., statisti-
cal independence) over both coefficients and time, and the
marginal distribution of each coefficient is assumed to be
sparse

P (a|θ) =
∏
i,t

P (ai(t)) (7)

P (ai(t)) =
1

ZS
e−S(ai(t)) (8)
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Fig. 1. Image model. A movie I(x, y, t) is modeled as
a linear superposition of spatio-temporal basis functions,
φi(x, y, τ), each of which is localized in time but may be
applied at any time within the movie sequence.

where S is a non-convex function appropriate for shaping
the prior to be of sparse form (i.e., more peaked at zero and
with heavy tails as compared to a Gaussian of the same vari-
ance, as shown in figure 2). Here we use S(x) = β log(1 +
(x/σ)2), where σ is a scaling parameter, and β controls the
degree of sparseness.

ai

P(ai)

Fig. 2. The prior probability distribution over the coeffi-
cients is peaked at zero with heavy tails as compared to
a Gaussian of the same variance (overlaid as dashed line).
Such a distribution would result from a sparse activity dis-
tribution over the coefficients.

Maximizing the posterior distribution over the coeffi-
cients is equivalent to minimizing − log P (a|I, θ)
â = arg min

a

[
λN

2 |I(x, y, t) − ∑
i ai(t) ∗ φi(x, y, t)|2

+
∑

i

∑
t S(ai(t))] (9)



which may be accomplished by gradient descent, yielding
the following differential equation for determining the co-
efficients:

ȧi(t) ∝ λN

∑
x,y

φi(x, y, t) � e(x, y, t) − S′(ai(t))

(10)

e(x, y, t) = I(x, y, t) −
∑

i

ai(t) ∗ φi(x, y, t)

where � denotes correlation over time. Note however that
in order to be considered a causal system, φ(x, y, t) must be
zero for t > 0. For now though we shall overlook the issue
of causality and focus on what may be learned from sparse
coding of time-varying images per se.

3. LEARNING

The objective function for learning the basis functions is the
average log-likelihood of the model

L = 〈log P (I|θ)〉 (11)

where

P (I|θ) =
∫

P (I|a, θ)P (a|θ)da . (12)

L is maximized by gradient ascent, yielding the following
Hebbian update rule:

∆φi(x, y, t) ∝ ∂L
∂φi(x, y, t)

(13)

=
〈〈ai(t) � e(x, y, t)〉P (a|I,θ)

〉
. (14)

Thus, the basis functions are updated by an amount propor-
tional to the correlation between the residual error e and the
coefficients a. Instead of sampling from the full posterior
distribution, though, we utilize a simpler approximation in
which a single sample is taken at the posterior maximum,
and so we have

∆Φ ∝ 〈âi(t) � e(x, y, t)〉 . (15)

The price we pay for this approximation, though, is that the
basis functions will grow without bound, since the greater
their norm, |φi|, the smaller each ai will become, thus de-
creasing the sparseness penalty in (9). This trivial solution
is avoided by rescaling the basis functions after each learn-
ing step (15) so that their L2 norm, gi = |φi|L2, maintains
an appropriate level of variance on each corresponding co-
efficient ai:

gnew
i = gold

i

[ 〈a2
i 〉

σ2

]α

, (16)

where σ is the scaling parameter used in the sparse cost
function and α is the rate of adaptation.

Fig. 3. Space-time basis functions learned from time-
varying natural images. Shown are 30 basis functions
randomly selected from the entire set of 200 functions
learned, arranged into two columns. Each basis function
is 12 × 12 pixels in space and 7 frames in time. Each
row shows a different basis function, with time proceeding
left to right. An animation may be downloaded from
http://redwood.ucdavis.edu/bruno/research/

bfmovie.avi.

4. RESULTS

The model was trained on moving image sequences ob-
tained from a natural movie database [6]. The images were
first whitened by a filter that was derived from the inverse
spatio-temporal amplitude spectrum, and lowpass filtered
with a cutoff at 80% of the Nyquist frequency in space and
time. Training was done in batch mode by loading a 128 ×
128 pixel, 64 frame sequence into memory and randomly
extracting a spatial subimage of the same temporal length.
The coefficients were fitted to this sequence via eq. 10. The
statistics for learning were averaged over ten such subim-
age sequences and the basis functions were then updated
according to equation 15. After several hours of training
the solution reached equilibrium.

The results for a set of 200 basis functions, each 12×12
pixels and 7 frames in time, are shown in figure 3. These
functions are similar to those obtained earlier with ICA [5].
All are direction selective, with the high spatial-frequency
functions biased towards slow speeds, as expected. The en-
tire set of basis functions spans the joint space of position,
orientation, spatial-frequency, and velocity, as shown in fig-
ure 4.
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Fig. 4. Basis function tiling properties. Each data point
denotes a different basis function. In the polar plot at left,
radius denotes speed (in units of frames/sec) and angle de-
notes the direction in which the basis function translates. In
the plot at right, the dashed line denotes the limit imposed
by the Nyquist frequency (12.5 Hz). (The striated cluster-
ing is an artifact due to decimation in the spatiotemporal
frequency domain.)

When the coefficients are computed via gradient descent
(eq. 10), one obtains highly sparse representations of time-
varying images. However, the coefficients never actually
reach values exactly equal to zero, and so there is no clear
distinction between active and inactive coefficients. This
problem can be ameliorated by matching pursuit [1], yield-
ing a representation that is clearly punctate in time, similar
to neural spike trains (figure 5). Note that even though the
image model itself is linear, the coding of images is highly
nonlinear.

5. CONCLUSIONS

We have shown in this work how natural image sequences
can be described in terms of a superposition of sparse, spa-
tiotemporal events. A 12× 12 pixel movie is re-represented
as a stream of 200 signals that are sparse over both space
(i.e., across the ensemble of coefficients) and time. The
sparsified representation has a spike-like character, in that
the coefficient signals are mostly zero and tend to concen-
trate their non-zero activity into brief events. These brief
events represent longer spatiotemporal events in the image
via the basis functions, which resemble the space-time re-
ceptive fields of cortical simple cells. It is thus suggested
that both the receptive fields and the spiking nature of neu-
ral activity work hand in hand to achieve a sparse code in
space and time [4], providing a more efficient representa-
tion of visual information.

An important but unresolved issue in implementing this
scheme is that of causality. In the matching pursuit scheme,
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Fig. 5. Time-varying value of a single coefficient computed
by sparsification (top) vs. convolving the basis functions
with the image sequence (bottom) for a 7.4 second image
sequence (25 f/s).

each coefficient has the advantage of being able to look both
backwards and forwards in time in order to determine its
optimal state. But in a real physical system, signals can be
determined only based on the past and present activity of
themselves and others. Thus, it will be necessary to mod-
ify the current model in to be predictive about future events
based upon present and past activity in order to determine
where to spike. This is the focus of current research.
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